Search - CY Cergy Paris Université Access content directly

Filter your results

24 Results
authFullName_s : M. Huertas-Company
Image document

From Naked Spheroids to Disky Galaxies: How Do Massive Disk Galaxies Shape Their Morphology?

L. Costantin , P.G. Pérez-González , J. Méndez-Abreu , M. Huertas-Company , B. Alcalde Pampliega , et al.
Astrophys.J., 2022, 929 (2), pp.121. ⟨10.3847/1538-4357/ac5a57⟩
Journal articles hal-03585551v1
Image document

Mass assembly and morphological transformations since z ∼ 3 from CANDELS

M. Huertas-Company , M. Bernardi , P. Pérez-González , M. Ashby , G. Barro , et al.
Monthly Notices of the Royal Astronomical Society, 2016, 462 (4), pp.4495-4516. ⟨10.1093/mnras/stw1866⟩
Journal articles hal-02316013v1

The morphological transformation of red sequence galaxies in clusters since z ∼ 1

P. Cerulo , W. Couch , C. Lidman , R. Demarco , M. Huertas-Company , et al.
Monthly Notices of the Royal Astronomical Society, 2017, 472 (1), pp.254-272. ⟨10.1093/mnras/stx1687⟩
Journal articles hal-02147601v1

The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution

M. Bernardi , A. Meert , R. Sheth , M. Huertas-Company , C. Maraston , et al.
Monthly Notices of the Royal Astronomical Society, 2015, 455 (4), pp.4122-4135. ⟨10.1093/mnras/stv2487⟩
Journal articles hal-02316543v1

The accelerated build-up of the red sequence in high-redshift galaxy clusters

P. Cerulo , W. Couch , C. Lidman , R. Demarco , M. Huertas-Company , et al.
Monthly Notices of the Royal Astronomical Society, 2016, 457 (2), pp.2209-2235. ⟨10.1093/mnras/stw080⟩
Journal articles hal-02316389v1
Image document

Euclid preparation. XXV. The Euclid Morphology Challenge -- Towards model-fitting photometry for billions of galaxies

E. Merlin , M. Castellano , H. Bretonnière , M. Huertas-Company , U. Kuchner , et al.
Astron.Astrophys., 2023, 671, pp.A101. ⟨10.1051/0004-6361/202245041⟩
Journal articles hal-03841758v1

Euclid preparation. XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey (Corrigendum)

S. E. van Mierlo , K. I. Caputi , M. Ashby , H. Atek , M. Bolzonella , et al.
Astronomy and Astrophysics - A&A, 2022, 668, pp.C3. ⟨10.1051/0004-6361/202243950e⟩
Journal articles hal-03935710v1
Image document

Deep learning for galaxy surface brightness profile fitting

D. Tuccillo , M. Huertas-Company , E. Decencière , S. Velasco-Forero , H. Domínguez Sánchez , et al.
Monthly Notices of the Royal Astronomical Society, 2018, 475, pp.894-909. ⟨10.1093/mnras/stx3186⟩
Journal articles insu-03718938v1
Image document

Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5

Lauriane Delaye , M. Huertas-Company , S. Mei , C. Lidman , R. Licitra , et al.
Monthly Notices of the Royal Astronomical Society, 2014, 441 (1), pp.203-223. ⟨10.1093/mnras/stu496⟩
Journal articles hal-02366114v1
Image document

Improving galaxy morphologies for SDSS with Deep Learning

H Domínguez Sánchez , M. Huertas-Company , M. Bernardi , D Tuccillo , J.L. Fischer
Monthly Notices of the Royal Astronomical Society, 2018, 476 (3), pp.3661-3676. ⟨10.1093/mnras/sty338⟩
Journal articles hal-01791939v1
Image document

Lessons Learned from the Two Largest Galaxy Morphological Classification Catalogues built by Convolutional Neural Networks

Ting-Yun Cheng , H. Domínguez Sánchez , J. Vega-Ferrero , C.J. Conselice , M. Siudek , et al.
Monthly Notices of the Royal Astronomical Society, 2022, 518 (2), pp.2794-2809. ⟨10.1093/mnras/stac3228⟩
Journal articles hal-03815199v1
Image document

Pushing automated morphological classifications to their limits with the Dark Energy Survey

J. Vega-Ferrero , H. Domínguez Sánchez , M. Bernardi , M. Huertas-Company , R. Morgan , et al.
Monthly Notices of the Royal Astronomical Society, 2021, 506 (2), pp.1927-1943. ⟨10.1093/mnras/stab594⟩
Journal articles hal-03122292v1

Deep Learning Identifies High- z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range

M. Huertas-Company , J. Primack , A. Dekel , D. Koo , S. Lapiner , et al.
The Astrophysical Journal, 2018, 858 (2), pp.114. ⟨10.3847/1538-4357/aabfed⟩
Journal articles hal-02307620v1

Euclid preparation XXVI: The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

H. Bretonnière , U. Kuchner , M. Huertas-Company , E. Merlin , M. Castellano , et al.
Astron.Astrophys., 2023, 671, pp.A102. ⟨10.1051/0004-6361/202245042⟩
Journal articles hal-03841727v1

Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European Extremely Large Telescope

C. J. Evans , M. Puech , B. Barbuy , P. Bonifacio , J. -G. Cuby , et al.
Proceedings of the SPIE, 0000, à renseigner, Unknown Region. ⟨10.1117/12.2055857⟩
Conference papers hal-03566064v1

On the Transition of the Galaxy Quenching Mode at 0.5 < z < 1 in CANDELS

Franklin Liu , Meng Jia , Hassen Yesuf , S. Faber , David Koo , et al.
The Astrophysical Journal, 2018, 860 (1), pp.60. ⟨10.3847/1538-4357/aac20d⟩
Journal articles hal-02307663v1
Image document

SDSS-IV DR17: final release of MaNGA PyMorph photometric and deep-learning morphological catalogues

H. Domínguez Sánchez , B. Margalef , M. Bernardi , M. Huertas-Company
Monthly Notices of the Royal Astronomical Society, 2022, 509, pp.4024-4036. ⟨10.1093/mnras/stab3089⟩
Journal articles insu-03717134v1

A probabilistic deep learning model to distinguish cusps and cores in dwarf galaxies

J. Expósito-Márquez , C.B. Brook , M. Huertas-Company , A. Di Cintio , A.V. Macciò , et al.
Mon.Not.Roy.Astron.Soc., 2023, 519 (3), pp.4384-4396. ⟨10.1093/mnras/stac3799⟩
Journal articles hal-03798284v1
Image document

The building up of observed stellar scaling relations of massive galaxies and the connection to black hole growth in the TNG50 simulation

S. Varma , M. Huertas-Company , A. Pillepich , D. Nelson , V. Rodriguez-Gomez , et al.
Monthly Notices of the Royal Astronomical Society, 2022, 509, pp.2654-2673. ⟨10.1093/mnras/stab3149⟩
Journal articles insu-03717137v1

Euclid preparation: XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

L. Bisigello , C. J. Conselice , M. Baes , M. Bolzonella , M. Brescia , et al.
Monthly Notices of the Royal Astronomical Society: Letters, 2023, 520 (3), pp.3529-3548. ⟨10.1093/mnras/stac3810⟩
Journal articles insu-03947319v1

Transfer learning for galaxy morphology from one survey to another

H. Domínguez Sánchez , M. Huertas-Company , M. Bernardi , S. Kaviraj , J.L. Fischer , et al.
Mon.Not.Roy.Astron.Soc., 2019, 484 (1), pp.93-100. ⟨10.1093/mnras/sty3497⟩
Journal articles hal-01897155v1

Galaxy size trends as a consequence of cosmology

M. Stringer , F. Shankar , G. Novak , M. Huertas-Company , F. Combes , et al.
Monthly Notices of the Royal Astronomical Society, 2014, 441 (2), pp.1570-1583. ⟨10.1093/mnras/stu645⟩
Journal articles hal-02563849v1
Image document

The miniJPAS survey: A preview of the Universe in 56 colors

S. Bonoli , A. Marín-Franch , J. Varela , H. Vázquez Ramió , L.R. Abramo , et al.
Astronomy and Astrophysics - A&A, 2021, 653, pp.A31. ⟨10.1051/0004-6361/202038841⟩
Journal articles hal-03129632v1
Image document

The host galaxies of luminous type 2 AGN at z ∼0.3-0.4

J J Urbano-Mayorgas , M. Villar Martín , F Buitrago , J Piqueras López , B Rodríguez del Pino , et al.
Monthly Notices of the Royal Astronomical Society, 2018, 483 (2), pp.1829-1849. ⟨10.1093/mnras/sty2910⟩
Journal articles hal-02094532v1