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Abstract. In this paper, we present a novel robot model of touch, and
its representation in an artificial cortex, that aims to capture some of
the complexity of human touch. In particular, our approach integrates
artificial mechanoception and nociception in an adaptive sensory field
(the robot’s “sensory body”), allowing for a more comprehensive simula-
tion of tactile sensations. The robot’s sensory field is then processed by
a biologically plausible neural network in a way akin to sensory process-
ing in the somatosensory and anterior cingulate cortex. Findings from
our experimental results show our model’s ability to integrate complex
data from infrared sensors, leading to the emergence of a spatial sensory
body representation in our neural network, with potentially significant
implications for robot perception and interaction.

Keywords: Adaptive Model of Touch and Pain · Bio-inspired Robotics
· Computational Neuroscience · Neural network · Neurorobotics

1 Introduction

Touch is a sensory modality that allows organisms to perceive and respond to
physical contact with their environment through specialized receptors in skin
and other tissues. It is essential for constructing internal representations of the
world, enabling the detection of noxious stimuli that signal harm. It also supports
spatialization of the body helping to understand its position and movement in
space. Touch perception involves sensory inputs such as mechanoception and
nociception.

Mechanoception is the biological process through which the body perceives
and interprets mechanical stimuli, including touch, pressure and vibration [27].
This process is mediated by sensory cells called mechanoreceptors [8] which are
distributed through the skin, muscles and other tissues. These receptors respond
to mechanical change, converting physical force into electrical signals transmitted
through Aβ fibers to the brain—specifically to the somatosensory cortex. The
cortex processes and interprets the tactile sensation, enabling the construction
of a physical body representation [9] (see, e.g., the cortical homonculus [28]).
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Nociception is a biological process crucial for detecting potential or actual
tissue damage [16]. It uses specific sensors, the nociceptors located in the skin,
muscles, and organs, that detect harmful stimuli, triggering signals through nerve
fibers, including Aδ fibers for sharp pain, to the brain. Research in robotics
has explored nociception models, incorporating nociceptors in robot designs for
simulating pain detection mechanisms [19, 18].

This predefined pathway from sensory receptors to precise areas of the cortex
could be at the origin of the brain’s spatial and functional modular organization,
where neurons and regions associated with common modalities or functions are
more strongly connected [26]. More precisely, plasticity seems to shape these
neural assemblies associated with specific sensory modalities or features within
a modality, under the action of co-activation zones [12].

Building on Louis L’Haridon’s PhD thesis on pain modeling in robots, and on
Raphaël Bergoin’s thesis on inhibitory plasticity in neural memory formation [4],
the initial motivation for this study was to understand and model the emergence
of a complex sensory representation of touch combining a new representation of
mechanoception and nociception in a “sensory body” of a mobile robot, and a
neural network model of the anterior cingulate cortex and somatosensory cor-
tex in an immature brain (i.e. not having reached its definitive organization).
More precisely, the aim is to model the pathway from nociceptors (respectively
mechanoreceptors) associated with the skin, to the anterior cingulate cortex (re-
spectively somatosensory cortex).

To this end, we use a Khepera IV robot (http://www.k-team.com/khepera-
iv). The robot chassis can be considered as a “human skin”, a metaphor that
overlooks the fact that the input that robots can process, often limited to prox-
imity sensors like IR or ultrasonic, as in our case, is very far from the complexity
and the nuanced information human skin provides, such as texture, temperature,
and pressure variations. Although efforts have been made to develop sensors
mimicking biological features [1, 21], they may not align with the current capa-
bilities of robots [3]. Although we use the IR sensors fitted around the robot’s
chassis to map the receptive field of the robot’s body, we have developed a com-
plex representation of touch (mechanoception and nociception) in the “sensory
body” of the robot, in order to extract relevant tactile features to be transmitted
to a biologically realistic artificial neural network. This neural network will then
adapt to these external signals, shaping its overall organization.

2 The sensory body

This section describes the robot’s “sensory body” used to model tactile sensa-
tions and the interaction between mechanoreceptors and nociceptors.

2.1 Tactile sensory fields

To model complex tactile sensing in our robot, we have developed a “sensory
field” using proximity sensors, to better capture some of the complexity of hu-
man skin’s tactile sensations. It is conceptualized through both its nominal and
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actual forms, where sensor readings, relative to a nominal (undisturbed) posi-
tion, assess deformations triggered by environmental interactions. This analysis
not only quantifies these interactions but also provides a qualitative insight into
the robot’s tactile experience.

We employ the Khepera-IV robot, a compact circular robot fitted with eight
evenly distributed InfraRed (IR) sensors around its chassis. To allow for a more
detailed spatial analysis, we first interpolate additional values between the IR—
the average of the readings of two consecutive sensors is interpolated twice be-
tween each pair of consecutive IR sensors, to enhance spatial resolution from
8 to 32 values. These interpolated values are then translated into polar coordi-
nates, offering a nuanced understanding of sensory interactions. For visualiza-
tion, these polar coordinates are further transformed into Cartesian coordinates,
depicting the sensory field as a “blob”. This representation effectively illustrates
the sensory body’s “deformation” (its changing, adaptable shape) in response to
external stimuli, with a nominal position established to denote its “undisturbed”
state (lack of sensory stimulation).

Our model also differentiates between nociceptors and mechanoreceptors,
and aims to simulate the skin’s elasticity and responsiveness by employing a
dual-field approach to encapsulate their distinct responses to stimuli [22]. This
distinction is crucial, as mechanoreceptors and nociceptors transmit signals at
different speeds: whereas β fibers relay touch and vibration quickly (30-70 m/s),
δ fibers, associated with pain, which conduct at slower speeds (5-30 m/s) [24].

2.2 Mechanoceptors

In humans, mechanoreceptors are crucial for detecting a broad spectrum of tac-
tile stimuli; they are primarily found within the dermis layer of the skin [15, 14].
Our model mirrors this with the placement of IR sensor values in our defined
sensory body (Fig. 1, A). They play a vital role in interpreting force, strain,
and stress applied to skin, quantifiable through Hooke’s Law (F = k · ∆L),
which describes the linear relationship between the force applied and the elastic
deformation of an object, and formulas for strain (ϵ = ∆L

L0
), stress (σ = F

A ),
and Young’s Modulus (E = σ

ϵ ), which defines the stiffness of a material, with
measurements in standard units of Newtons, Pascals, and dimensionless ratios.

The mechanotransduction pathway activates with these receptors’ response
to external forces, using Young’s Modulus at each sensory point to determine
activation levels. This data integrates with a neural network simulating the so-
matosensory cortex’s response to tactile stimuli (Fig. 1, F). This model encapsu-
lates the complex relationship between physical deformation and neural response,
showcasing the encoding and processing of tactile information.

2.3 Nociceptors

Nociceptors, recognized as the sensors of pain [10], are sensitive to noxious stim-
uli, playing a critical role in the body’s ability to detect and respond to po-
tentially harmful conditions. These receptors are adept at discerning various
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Fig. 1. (A) Shows four types of mechanoceptors (in blue) and nociceptive free nerve
endings (in red) in the human hand, drawn after [16]. (B) Top view representation of a
Khepera-IV robot with 8 IR sensors. (C) Normalized and interpolated IR sensor data
from 8 to 32 values. (D) Polar coordinates from the data showing the robot’s physical
outline. (E) Representation of sensory body’s deformed through pressure in Cartesian
space; the red circle indicates the nominal position of mechanoceptors, the green circle
marks the nominal nociceptors’ position, illustrating proximity to the robot’s body and
a positional threshold. The yellow and green fields represent the “deformed” sensory
and nociceptive layers, respectively. (F) Cortical neurons processing mechanoceptive
information, with red circles for excitatory and blue for inhibitory neurons.
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characteristics of stimuli, including intensity, duration, and even the type of the
pain: whether it is sharp, throbbing, or burning.

Based on this understanding, we compute physical information on our sen-
sory field deformation to distinguish touch events, drawing parallels between the
nociceptors’ functionality and our system’s ability to interpret tactile data. This
involves analyzing the diffuse or intense deformation of the blob, using a clas-
sification algorithm, the velocity of the touch, its duration, and the frequency
of touch encounters. From our sensory body, we thus compute eight pieces of
information across four physical aspects (deformation, velocity, frequency and
duration), each with two classes, forming an 8-dimensional vector representing
noxious stimuli for the neural network. This vector accounts for the speed differ-
ence between slower δ fibers (nociceptive) and faster β fibers (mechanoceptive).
To account for this speed difference, we delay stimuli in time.

As depicted in Fig. 2, our methodology for computing nociceptive features
begins by assessing the force exerted across the sensory field to evaluate deforma-
tion. This analysis helps us identify whether the contact is focused or disperse,
categorized as intense or diffuse deformation respectively (Fig. 1, A & B). We
then determine touch activation based on these deformations (Fig. 1, C), leading
to the calculation of key tactile characteristics: frequency of touch events (Fig. 1,
D & E), duration(Fig. 1, I & J), and velocity of deformation (Fig. 1, G & H).

3 Neural network model

To process sensory information from mechanoreceptors and nociceptors and to
model the neuronal activity of the somatosensory cortex and the Anterior Cingu-
late Cortex (ACC), we employ a biologically inspired spiking neuronal network
subject to synaptic plasticity. For more details on the model and implementation
choices, see [4, 6].

3.1 Spiking neuronal network model

Throughout this study, we use a network of excitatory-inhibitory heterogeneous
quadratic integrate and fire (QIF) neurons [11]. The network is composed of
80% of excitatory neurons and 20% of inhibitory neurons, as commonly accepted
in the human cortex [20]. The inhibitory neurons are divided into two distinct
populations: a population following Hebbian learning, and a population following
anti-Hebbian learning (i.e. neurons that fire together, decoupled together).

Therefore, the evolution of the membrane potential Vi of each neuron (i =
1, ..., N) is described by the following equation:

τmV̇i = V 2
i (t) + ηi + geS

e
i (t) + ghiS

hi
i (t) + gaiS

ai
i (t) + Ii(t) + ξi(t), (1)

where synaptic inputs Se
i (t), S

hi
i (t), and Sai

i (t) (excitatory, Hebbian inhibitory,
and anti-Hebbian inhibitory, respectively) for neuron i are defined by:

τ
e(i)
d

˙
S
e(hi,ai)
i = −S

e(hi,ai)
i +

τ
e(i)
d

Ne(hi,ai)

Ne(hi,ai)∑
j

wijδ(t− tj), (2)
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where τm = 0.02s is the membrane time constant, τed = 0.002s and τ id = 0.005s
the time decay of excitatory and inhibitory neurons, ηi ∼ N (0.0, (πτm)2) the
excitability parameter, N = Ne + Nhi + Nai = 100, Ne = 80, Nhi = 10 and
Nai = 10 respectively the number of excitatory and Hebbian and anti-Hebbian
inhibitory neurons, ge = 100, ghi = 400 and gai = 200 the global coupling
strength for the excitatory neurons and Hebbian and anti-Hebbian inhibitory
neurons. The coupling weights from neuron j to i is depicted by wij , tj is the time
of spike of the j-th neuron, and δ(t) is the Dirac delta function. Finally, Ii(t) =
{0, (50πτm)2} is an external input current and ξi(t) ∼ N (0.0, (4πτm)2) is a
Gaussian noise. We consider a fully connected network without self-connections.

3.2 Plasticity functions

Regarding the adaptation of the weights wij , we use spike-timing-dependent
plasticity (STDP) rules that depend on the time difference ∆t = ti − tj be-
tween the last spikes of the post-synaptic neuron i and pre-synaptic neuron j.
The plasticity functions Λ+(∆t) and Λ−(∆t) from Eqs. 3 for potentiation and
depression respectively, depend on the nature of the pre-synaptic neuron.

Λ+(∆t) =

{
Λ(∆t), if Λ(∆t) ≥ 0,

0, if Λ(∆t) < 0,
Λ−(∆t) =

{
0, if Λ(∆t) ≥ 0,

Λ(∆t), if Λ(∆t) < 0.
(3)

For excitatory neurons we use a Hebbian STDP asymmetric function com-
monly used in the literature [7] described by Eq. 4.

Λ(∆t) =

{
A+e

−∆t
τ+ −A−e

− 4∆t
τ+ − f, for ∆t ≥ 0,

A+e
4∆t
τ− −A−e

∆t
τ− − f, for ∆t < 0,

(4)

with the time constants τ+ = 0.02s and τ− = 0.05s, the amplitudes A+ = 5.296
and A− = 2.949. The forgetting term f = 0.1 allows to have a constant small
depression of the weights whatever the spike timing difference. It models the
natural, constant and slow forgetting of memories [13].

For Hebbian (anti-Hebbian) inhibitory neurons we use a Hebbian (anti-
Hebbian) STDP symmetric function [23, 17] described by Eq. 5.

Λ(∆t) = ±A(1− (
∆t

τ
)2)e

−∆t2

2τ2 ∓ f, (5)

with time constant τ = 0.1s, amplitude A = 3 and forgetting term f = 0.1.

3.3 Adaptation of synaptic weights

The evolution of the synaptic weights, which remain continually subject to adap-
tation, unlike more conventional learning systems, follows this ordinary differ-
ential equation:

τlẇij = (−1)aq [tanh(λ(wl
q −wij)) ∗Λ+

q (∆t) + tanh(λ(wij +wu
q )) ∗Λ−

q (∆t)] (6)



Emergence of complex representation of touch 7

where q denotes if the pre-synaptic neuron is excitatory q = e or Hebbian (anti-
Hebbian) inhibitory q = hi (q = ai), for excitatory (inhibitory) neurons we set
wl

q = 1 (wl
q = 0) and wu

q = 0 (wu
q = 1), thus ensuring that the excitatory

(inhibitory) couplings are defined in the following interval wij ∈ [0 : 1] (wij ∈
[−1 : 0]). Moreover, ae = 2 and ahi = aai = 1, thus for inhibitory synapses, the
plasticity functions Λ+(∆t) and Λ−(∆t) are inverted and multiplied by −1 since
potentiation (depression) of inhibitory weights makes them converge towards −1
(0). Finally, τl = 0.2s is the learning time scale for the adaptation.

4 Experiments and Results

4.1 Experimental Setup

A Khepera IV robot was placed on a table in the robotics laboratory. A human
interacted with the robot, stimulating its IR sensors by inducing contact within
the sensory field area with his hand (as shown in 2) in the following experimental
conditions. Three repetitions of touch tests focusing on four metrics were carried
out: Speed (Slow, Fast), Frequency (Low, High), Duration (Short, Long), and
Intensity (Diffuse, Intense). For each metric, sensors underwent individual test-
ing under each condition, resulting in a total of 64 tests (8 sensors x 4 metrics x 2
conditions). To mitigate bias, both the order of conditions and the sensors were
randomized. Each touch event was separated by 1 second, with sensor data cap-
tured at a frequency of 100Hz, ensuring a comprehensive dataset. The inclusion
of randomization in sensor and condition order aimed to prevent any sequen-
tial bias and ensure the robustness of the experimental results. The experiment
lasted 20 minutes, and data were collected throughout. The experiment was run
5 times, with similar results. Below we discuss a representative run.

4.2 Results

Nociceptors & Mechanoceptors output. In Fig. 2, we can observe the output of
the nociceptive vector and of the physical information we used to compute it in
a specific time windows between 125 and 150 seconds. Mechanoceptor vector has
been computed as described in 2.2. These data are sent to the neuronal model.

Dynamics during learning. We first describe the dynamics of the network during
learning of external sensory stimuli in Fig. 3, A. First, we observe that neurons
associated with mechanoreceptors (excitatory neurons 64 to 127 and inhibitory
neurons 144 to 159) respond to tactile input slightly earlier than neurons asso-
ciated with nociceptors (excitatory neurons 0 to 63 and inhibitory neurons 128
to 143). This time delay between the information from the two types of sensor
stems from the beta (for mechanoreceptors) and delta (for nociceptors) fibers,
which transmit sensory information to the two cortical areas at different speeds.

In the somatosensory area (see light spikes), a touch on the robot is charac-
terized by an increase in the firing rate of neurons (excitatory and inhibitory)
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Fig. 2. Picture of our experimental setup (top), and Dynamic Interactions and Time-
Based Analysis of Tactile Sensory Events in a Nociceptive Model. Black arrows indicate
the directional interactions between different tactile sensory events within the same
time window. (A) Mean force applied to the nociceptive field over time. (B) Partitioning
of deformation on the nociceptive blob over time. (C) Activation of touch on the blob
over time, true if a certain amount of force is applied to the blob. (D) Touch event over
time. (E) Frequency of touch in Hz over time. (F) Separation of frequency bands over
time. (G) Velocity of touch in mm/s over time. (H) Segregation of velocity bands over
time. (I) Duration of touch over time. (J) Division of duration bands over time.
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Fig. 3. Neuronal simulation of touch stimulation. (A) The raster plot displays the
firing times of excitatory (red dots) and inhibitory (blue dots) neurons during the
simulations. Dark red (blue) dots represent spikes in the anterior cingulate cortex (no-
ciceptors), while light dots represent spikes in the somatosensory cortex (mechanore-
ceptors). (B,C,D) The matrices represent the connection weights between neurons at
the beginning, middle and end of the simulation. The color denotes if the connection
is excitatory (red) or inhibitory (blue) or absent (white). The magenta area represents
the ACC with touch features, while the green area represents the somatosensory cortex
with locations of touch.

associated with a specific location on the robot’s body. Thus, a more spread
contact will activate more neurons than a more targeted contact. In addition, a
deeper touch will increase neuron activity more than a softer touch.

On the side of the anterior cingulate area (see dark spikes), neurons (exci-
tatory and inhibitory) increase their activity in the presence of particular touch
features such as frequency bands, duration bands, deformation shapes and ve-
locity bands. In this way, certain neurons are never activated at the same time,
given the opposite nature of the features they encode (e.g. intense versus diffuse
deformation). Conversely, certain features can be activated at the same time
when they are not incompatible (e.g. a diffuse, long and low-frequency touch).
In addition, it should be noted that some feature neurons activate only after
other features have been activated. For example, a touch must be perceived as
short before it can be considered long.

Resulting weight connectivity. This learning leads to the formation of particular
structures in the weights connectivity of Fig. 3, B to D. Firstly, at the global
level, we observe the formation of two modular structures, where excitatory
neurons associated with the same sensory receptors (either nociceptors in ma-
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genta or mechanoreceptors in green) share strong connections, while connections
between the two sensory areas are sparse and weak. This segregation between
cortical areas is made possible by the beta and delta fibers described above,
which prevent temporal correlations between information from nociceptors and
mechanoreceptors, and hence their structural reinforcement.

In the area associated with mechanoreceptors (in green), we find that neurons
associated with physically close sensors are strongly connected, while connections
between distant areas are essentially suppressed. In other words, we obtain the
formation of a kind of ring connectivity representing the robot’s body.

Concerning the nociceptors area (in magenta), we can see that neurons coding
for contradictory information (e.g. low and high frequencies) are totally decou-
pled. Nevertheless, some distinct feature neurons are strongly connected, showing
that certain types of touch are characterized by different features. In particular,
we find that some feature neurons, such as those associated with low frequency
touch, share connections with all other feature neurons. Indeed, these features
almost always remain active, which also explains the few weak connections be-
tween the two cortical areas.

5 Discussion & Conclusion

In this paper, we have presented a sensory body model for a mobile robot able
to capture complex information about touch, including painful touch, from few
data. We further investigated the coding of nociceptive features in an artificial
neural model of Anterior Cingulate Cortex, a brain region associated with pro-
cessing emotions and pain [25]. In the representation that emerged, we observed
correlations and decorrelations between some nociceptive features extracted from
different types of noxious stimuli, suggesting specific coding mechanisms.

Using a Khepera IV robot, we modeled a specific sensory body and tested
various noxious stimuli designed to elicit distinct responses. The observed corre-
lations and decorrelations between specific nociceptive inputs imply that some
features co-activate, potentially encoding and discriminating different types of
noxious stimuli. For example, in skin, pressure, scratch, and pinch stimuli ac-
tivate distinct features. These observations support Acuña’s [2] description of
nociceptive coding in the ACC.

We also investigated how tactile information from nociceptors and mechanore-
ceptors can be learned by an artificial neural network to form two distinct areas,
comparable to what can be observed in biology with the anterior cingulate cortex
and the somatosensory cortex. This highlights the segregation of information,
with the specialization of brain regions for specific tasks or modalities [29]. These
results echo those obtained by Bergoin et al. in [5, 6] with simpler stimuli.

Further, the ACC and somatosensory cortex individually provide information
on the characteristics of the touch (what and how) and on its location (where).
More precisely, in our somatosensory network, we found that neurons coding for
physically close robot body parts were more strongly connected than those for
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distant ones. This reminds us of the concept of semantic memory, where we find
an association between mental representations and topology [29].

Our model contributes to the explainability of robot behavior, since, given
that the neural network is able to react to particular features and the location
of touch, we could read these neural activities directly and associate them with
particular behaviors or reflexes.

In future work we could learn these associations and teach the robot to
link certain features with types of pain or pleasure and particular movements.
Finally, the neural network used would allow us to carry out experiments in
more complex and changing environments, and assess the ability of the model
to maintain continual learning without catastrophic forgetting of memories.

Acknowledgement. LLH and this research are supported by an INEX Chair
in Neuroscience and Robotics to LC.
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