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S U M M A R Y
Gravity instabilities in offshore deltas often involve three structural domains in interaction
by the weak detachment plane: an upslope extensional region, a transitional domain sliding
seaward, and a downslope compressive region. We provide the fluid pressure conditions for the
gravity instabilities due to the interaction of these three structural domains. For that purpose,
we apply the kinematic approach of Limit Analysis which relies on the mechanical equilibrium
and on the assumption that the onset of the instability is indeed triggered by the motion of
the three domains if the Coulomb criterion is met on all slipping faults. The Limit Analysis
predictions include the detachment activation length and the normal and thrust fault dips for
any given topographic profile. The approach is validated by showing that our predictions match
the experimental results on normal faulting triggered by air overpressure in sand analogues.
For offshore wedges, the stabilizing effect of the frontal thrusting and of the transitional
zone sliding requires large overpressures to reduce friction within the detachment and upslope
sediment deposition to trigger the instability. As a consequence, the topographic slope is found
to be several degrees larger than predicted with the Critical Coulomb Wedge (CCW) theory
which does not account for the interaction of the three domains. The difference in predictions
between the two theoretical approaches is important for length ratio less than 100, defined by
the ratio of the detachment activated length to the downslope sediment thickness. Fitting our
prototype to the offshore Niger Delta and estimating the above length ratio to be in the range
of 30–70, it is found that, for cohesionless materials, the effective friction coefficient μ′

B is less
than 0.27 within the bulk material and μ′

D is less than 0.017 in the detachment for the gravity
instability to occur. These values are lower than those previously determined (μ′

B = 0.5−0.9,
μ′

D = 0. − 0.2) by considering only the compressive domain and applying the CCW theory.
These new values correspond to a pore-fluid pressure in the range of 80–90 per cent of the
lithostatic pressure within the bulk material (Hubbert–Rubey fluid-pressure ratio 0.8–0.9), and
in the range of 97–99 per cent of the lithostatic pressure within the detachment.

Key words: Geomechanics; Sedimentary basin processes; Dynamics and mechanics of fault-
ing; Dynamics: gravity and tectonics; Mechanics, theory, and modeling; Africa.

1 I N T RO D U C T I O N

Regional seismic studies across the Amazon Fan (Silva et al. 1998; Cobbold et al. 2004), the offshore Niger Delta (Weber & Daukoru 1975;
Hooper et al. 2002; Maloney et al. 2010), and the offshore Brunei wedge (Tingay et al. 2009; King et al. 2010) show normal faulting in
the thick, coastal part on the shelf and simultaneous thrusting in the thin, deep part, with all faults rooted on a common detachment level.
These structures are thus typically characterized by three successive domains above the weak detachment: the upslope extensional province,
the transitional sliding domain, and the downslope compressive province. They are interpreted as the result of gravity-driven mechanical
instabilities triggered by the sediment loading and the associated high fluid pressures at depth (Damuth 1994). Our objective is to propose a
2-D methodology to capture the fluid pressure conditions at the onset of these gravity instabilities, accounting for the interaction of the three
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structural provinces. This methodology relies on an assumption, shared with the classical Critical Coulomb Wedge (CCW) theory, that the
detachment, composed of shales, is frictional and cohesive.

The link between extensional and compressive provinces during gravity instability was demonstrated experimentally. The wedge
prototype composed of a progradational dry sand on a viscous silicone substratum considered by Ge et al. (1997); McClay et al. (1998);
Rowan et al. (2004); Vendeville (2005) results in the synchronous development of an upslope graben system and a downslope fold-and-thrust
belt. These experiments however do not capture the influence of the fluid overpressures. It is only recently that analogue experiments with
air flow through sand have been proposed (Mourgues & Cobbold 2003, 2006b) to simulate the onset and the evolution of overpressured,
gravity-driven shale deltas.

The interaction between the three structural provinces was also questioned on theoretical grounds. Crans et al. (1980) proposed an exact,
analytical solution based on the slip line theory to capture listric faults for frictional, overpressured materials considering an inclined layer.
Their approach applies to the extensional and compressive domains. The difference in forces parallel to the slope in these two regions is
then balanced assuming a frictional detachment providing the extent of the intermediate region. The main difference with the CCW theory
of Dahlen (1984) is that the latter approach applies to a wedge. The CCW theory generalized the concept of slope instability well known in
civil engineering to the length scale of sedimentary, saturated wedges. It applies to the extensional upslope (active) and to the compressive
downslope (passive) domains but does not propose any connection between the two. The extent of the intermediate region can also be
estimated following the same argument of Crans et al. (1980), for an inclined layer, as presented by Mourgues et al. (2009).

There has been some applications of the CCW theory to fluid-saturated wedges (Bilotti & Shaw 2005; Suppe 2007, 2014) on the Niger
Delta frontal compressive region, assuming a frictional behaviour of the sediments and the detachment. It was found that the pore-fluid
pressure within the detachment is 90 per cent of the lithostatic pressure (Hubbert-Rubey fluid-pressure ratio λ ∼ 0.9).

Our objective is to continue this line of work on the Niger Delta and to propose a methodology for capturing the interaction between
the three domains of the collapsing wedges assuming complex geometry and cohesive materials. It is a 2-D analytical application of the
kinematic approach of Limit Analysis (Chen 1975; Salençon 2002) as presented by Maillot & Leroy (2006) for dry frictional materials and
by Pons & Leroy (2012) and Yuan et al. (2015), referred to as paper 1 in what follows, for fluid-saturated media. The application of Limit
Analysis to the offshore Niger Delta allows us to re-evaluate the fluid pressures to even larger levels than those already inferred by Bilotti &
Shaw (2005), confirming the earlier predictions of Albertz et al. (2010).

This contribution contents are as follows. Section 2 and Appendix A concern the presentation of the Limit Analysis for the gravity
instability with three structural domains. Section 3 validates this method by comparing the predictions with analytical (Hubbert & Rubey 1959;
Lacoste et al. 2012) and experimental (Mourgues & Cobbold 2006a) estimations of the collapse length and fault dips for an inclined layer.
This methodology is then applied to the offshore Niger Delta to constrain the fluid pressures necessary to produce the current activation of
the three structural domains. The Supporting Information proposes a comparison of the various fluid overpressure parametrizations found in
the literature as well as the complete derivation of the solution of Lacoste et al. (2012), for the sake of completeness.

2 G R AV I T Y I N S TA B I L I T I E S W I T H L I M I T A NA LY S I S

The concept of gravity instability discussed above is now developed into a prototype amenable to theoretical analysis, with an extensional
upslope (active) and a compressive downslope (passive) domain. The Limit Analysis is then presented for the general case of a wedge with
an arbitrary topographic profile and fluid overpressures.

2.1 General prototype

The geometry of our prototype and the gravity-driven collapse mechanism are presented in Fig. 1. The domain is composed of a uniform,
fluid saturated material and has an irregular topography. It rests on a planar detachment (AB) inclined at the angle β (positive if dipping

Figure 1. The general prototype and the collapse mechanism for gravitational instabilities. The half-graben (HG) collapse drives the sliding of the transitional
region (sliding block SB) up to the thrusting at point G with the hanging wall (HW) (semi-arrows along the faults JH, GE and the active detachment JG and
double semi-arrows across the axial surfaces JI and GF).
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Gravity instability conditions for offshore wedges 1657

landward, and β̄ denotes the absolute value of β). The bulk material and the detachment are frictional with distinct cohesions Ci and friction
angles ϕi, with the subscript i set to B or D, respectively. The same notation is used through this work for cohesions and friction angles and
only the subscript i will be defined for new domains or faults in what follows. The gravity instability results from the normal fault JH and
the thrust ramp GE, simultaneously active with the sliding on the detachment JG. These faults could have different properties from the bulk
material and the subscripts for the fault properties are NF and R. The normal and the reverse faults have conjugate shear discontinuities or
axial surfaces JI and GF and having the same properties as the bulk material. The normal fault and the axial surfaces are dipping at γ i and θ i

with the subscript i set either to a or to p, Fig. 1. The subscript a and p means active and passive, a classical terminology in geotechnics to
define the regions collapsing in extension and compression, respectively.

We have thus defined the three structural regions. It is the half-graben (HG) defined by the region HIJ which is the driver for the gravity
instability. It presses the resisting sliding block (SB) seaward up to the compressive domain where thrusting occurs with the hanging wall
(HW) defined by the region EFG. This motion is with respect to the immobile frontal seaward region (FS) and the back, landward region
(BL). The mechanical approach presented in the last part of this section provides the means to compute the position of the six points E, F, G
and H, I, J.

The material is submerged and any point x within the wedge has a sea bed at the depth D(x), Fig. 1. The second or vertical coordinate
axis points upward with an origin at the sea surface. The fluid pressure p at x and the corresponding fluid overpressure �p, difference with
the hydrostatic pressure, are

p = g[−λ ρx2 + (ρ f − ρλ)D] and �p = −�λ ρg(x2 + D) , (1)

in which ρ and ρ f are the volumetric mass of the saturated solid and of the fluid, respectively. The two scalars λ and �λ are the fluid pressure
ratio and the overpressure ratio defined by Hubbert & Rubey (1959)

�λ = λ − λhydro, with λhydro = ρ f /ρ and �λMax = 1 − ρ f /ρ. (2)

The maximum value �λMax is introduced for further reference. The value of the pressure ratios λi could differ in the bulk material, in the
detachment, as well as in the normal and thrust faults. The subscript i is thus either B or D as for the frictional properties. The history and
present-day conditions which could explain these differences are not discussed in this contribution.

It should be stressed that there are different definitions of λ in the literature due to the selection of various coordinate systems. These
different parametrizations lead to difficulties when comparing the various predictions. Some definitions have been discussed at length in the
appendix of paper 1 and two new definitions are presented in the Supporting Information.

2.2 Application of Limit Analysis

The first step of the kinematic approach of Limit Analysis (Chen 1975; Salençon 2002) consists in the definition of the virtual velocity field
associated to the collapse mechanism just described. This velocity is virtual since it may not be the exact one and corresponds, as in our
particular case, to a simplification proposed to obtain an analytical solution.

The proposed virtual velocity field is uniform in each of the three structural domains and denoted Û HG, Û SB and Û HW. The superposed
hat is to remind the reader of the virtual character of the piecewise uniform field. This piecewise uniform property implies that there are
discontinuities across the two axial surfaces (JI and GF) and of course across the detachment (JG) and the two faults (JH and GE). The set of
these discontinuities is denoted 	. The difference between the velocities on the two sides of a discontinuity in 	 is the velocity jump denoted
Ĵ (discontinuities are oriented in Fig. A1).

One further property is required for this velocity field: velocity jumps are not parallel to the corresponding discontinuity but are oriented
at the angle ϕi corresponding to the discontinuity friction angle. The theoretical reasons for this choice, which is counter-intuitive for a
naturalist, were discussed at length in Maillot & Leroy (2006) and paper 1, as well as in Cubas et al. (2008, Electronic Supplement). The
immediate consequence of this orientation selection is the introduction of a set of constraints which enforce that the sense of shear on the
axial surfaces and the faults is indeed the ones presented in Fig. 1:

ϕB + ϕD + β < θa < π , ϕN F − ϕD − β < γa < π,

ϕB + ϕN F < γa + θa < π , −β < θp < π − ϕB − β − ϕD,

β < γp < π + β − ϕR + ϕD , 0 < γp + θp < π − ϕB − ϕR, (3)

as it is demonstrated in Appendix A1 with the construction of two hodographs.
The second step in Limit Analysis is the application of an integral expression (weak form) of mechanical equilibrium. Following Pons &

Leroy (2012), it states the equality between the effective external power and the effective internal power

P ′
ext(Û ) = P ′

int(Û ) , ∀ Û (4)

for any virtual velocity field having the properties described above. The effective external power is

P ′
ext(Û ) =

∫
�t

ρg · Û dV +
∫

	

p	n · Ĵ dS . (5)
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1658 X.P. Yuan, Y.M. Leroy and B. Maillot

The first term is the power of the gravity field on the virtual velocity, with g denoting the gravity acceleration. The second term corresponds
to the power of the velocity discontinuities (normal component, with the normal vector denoted n and pointing towards the positive side)
on the fluid pressure, considered as an external field for the set 	 defined above. The calculation of P ′

ext(Û ) is technical and this exercise is
postponed to Appendix A1 where the general expression (A3) is proposed.

The internal effective power P ′
int in (4) results in our particular case from the power of the effective stress vectors on the velocity jumps

of the set 	. Since the exact stress field and consequently the stress vectors are unknowns, it is proposed in the kinematic approach of Limit
Analysis to construct an upper bound to this internal power. It is defined as the maximum resisting power and is obtained by integration along
the discontinuities of 	

P ′
mr(Û ) =

∫
	

ĴC cos ϕ dS, (6)

where C and ϕ are the cohesion and friction angle of the discontinuity. Again, the detailed expression for this quantity is found in Appendix A1,
eq. (A4). The justification for the integrand in eq. (6) is found in Maillot & Leroy (2006). Note that if the cohesion is null, P ′

mr is null.
Frictional resistance is nevertheless accounted for in the gravity term of the external power (5) which is developed explicitly in eq. (A3).

Combine now eq. (4) and the fact that eq. (6) is a bound to the internal power to obtain the inequality

P ′
ext(Û ) − P ′

mr(Û ) ≤ 0 . (7)

The stability conditions controlling the onset of the gravity instability are as follows. If this inequality is strictly enforced for all choices
of velocity field, there is no gravity instability. If there are collapse mechanisms for which the effective external power and the maximum
resisting power are identical, they define the conditions for the onset of a gravity instability. If the effective external power is found to be
greater than the maximum resisting power, the corresponding collapse mechanism represents a dynamic instability. Note that the kinematic
approach of Limit Analysis does not warrant a unique collapse mechanism at the onset of instability.

For all practical purposes, the procedure to determine the collapse mechanism consists in maximizing the difference in the left-hand side
of eq. (7). The mechanism associated with this maximum is considered to be dominant, since it is the closest to the instability condition if the
difference in eq. (7) is negative. This maximum is found by varying the dips γ a, θa, γ p, θp and the positions of points J and G or, equivalently,
the positions of the six points E, F, G and H, I, J. The numerical procedure is the same as the one presented in Cubas et al. (2008, Appendix).

3 VA L I DAT I O N F O R A N I N C L I N E D L AY E R

The complex topography of our general prototype is now planar, parallel to the detachment (α = β̄ = −β), so that the prototype is forming
an inclined layer of thickness h (Fig. 2a). All materials are cohesionless so that the maximum resisting power in eq. (6) is zero. The normal
fault and thrust ramp are assumed to have the same friction angle and fluid pressure ratio as the bulk material: ϕNF = ϕR = ϕB, λNF = λR = λB.
The solution of Limit Analysis for this simplified problem is now presented, and is compared with known results and with experimental data
for granular materials.

Figure 2. The critical length of the transitional region for the inclined layer presented in (a). (b) Comparison of the predictions of Limit Analysis (symbols)
and the analytical solutions proposed in Lacoste et al. (2012). The vertical dashed lines present the critical dips for an infinite length. (c) Zoom for small values
of the transitional region length and layer dip with in addition the relative difference between the two predictions (grey dashed curve).
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Gravity instability conditions for offshore wedges 1659

The general expression (A3) in Appendix A1 for P ′
ext is simplified greatly for this prototype and the stability condition (7) reads

P̃ ′
ext = A L̃ J G + B ≤ 0 ,

with A = [ − �λMax sin(β + ϕD) + �λD sin(ϕD)/ cos β
]
,

and B = 1

2
�λMax

[[
cot(γa + β) + cot(θa − β)

]
sin(γa − ϕB)ŨHG

− [
cot(θp + β) + cot(γp − β)

]
sin(γp + ϕB)ŨHW

+ [
cot(θa − β) + cot(θp + β)

]
sin(β + ϕD)

]

+ 1

2
�λB

sin(ϕB)

cos β

[ ŨHG

sin(γa + β)
+ J̃J I

sin(θa − β)
+ ŨHW

sin(γp − β)
+ J̃G F

sin(θp + β)

]
. (8)

The superposed tilde identifies dimensionless quantities obtained by division of physical quantities with reference values, ρgh for stresses,
h for lengths. The virtual velocities are normalized by the sliding block velocity ÛSB and the superposed tilde marks also this division. The
relations between the various velocities are constructed in Appendix A1 and the final result is

ŨHG

sin(θa − ϕB − β − ϕD)
= 1

sin(θa + γa − ϕN F − ϕB)
= J̃J I

sin(γa + β − ϕN F + ϕD)
,

ŨHW

sin(θp + ϕB + β + ϕD)
= 1

sin(θp + γp + ϕR + ϕB)
= J̃G F

sin(γp − β + ϕR − ϕD)
. (9)

It should be noted that the sea depth does not influence the stability condition in eq. (8). It is only the fluid pressure ratios which matter for
the fluid contribution. The same remark applies in the next section.

The term A L̃ J G in eq. (8) is independent of the fault dips and is interpreted as the contribution of the sliding block to the effective,
external work. The term B is independent of the sliding block extent and corresponds to the contributions of the upslope half-graben and the
downslope hanging wall.

The zero cohesion implies that the maximum resisting power P ′
mr in eq. (6) is also zero and, according to the stability condition eq. (7),

that the onset of gravity instability is defined by

Max
[P̃ ′

ext(β, γa, θa, γp, θp, L̃ J G)
] = 0 , (10)

having limited the list of arguments to the geometrical variables. The relation for P̃ ′
ext in eq. (8) is affine and the sign of the scalar A is

determinant to find the optimum geometrical variables maximizing eq. (10). If A is positive, the optimum length L̃ J G is infinite. If A is
negative, there is an optimum length −B/A if B is positive. A negative maximum B would mean stability. The sign of A is conveniently
examined by introducing the critical βc for which this term is zero:

βc = −1

2
sin−1

[(
1 − 2

�λD

�λMax

)
sin(ϕD)

]
− 1

2
ϕD . (11)

The layer dip is negative and if β is less than βc (larger in absolute value), the scalar A is positive. The maximum P̃ ′
ext is then associated to

an infinitely long layer. For such values of β, the system is dynamically unstable. Of more interest here are the cases for which β is greater
than βc (smaller in absolute value). The maximum in eq. (10) is then evaluated as follows: (i) maximize B with respect to γ a, θ a, γ p and θp

subjected to the constraints in eq. (3), and thus determine the optimum dips of the half-graben and the hanging wall; (ii) calculate the collapse
length L̃ J G which ensures the instability condition (10) if the maximum B is positive.

The new result here is that the length of the sliding block is simply determined by the ratio of two scalars. The denominator A is only
function of the detachment dip and friction angle and of the overpressure ratio. The numerator B is function of the geometry, the frictional
properties and the overpressures in the half-graben and in the hanging wall. The change of sign (negative to positive) of the numerator signals
a dynamic instability starting with the longest wave-length mode possible. This change of sign could be due, for example, to a variation in
the detachment overpressure or frictional properties, or to a rotation of the detachment dip.

3.1 Comparison with other analytical results

Hubbert & Rubey (1959) considered the classic stability analysis of an infinite frictional, cohesionless layer above a fluid overpressured base
and determined the critical slope, their eq. (117)

β̄c = tan−1
[
(1 − λ

(L)
D ) tan(ϕD)

]
, (12)

which is expressed here in terms of the overpressure ratio λ
(L)
D defined in Lacoste et al. (2012)

λ(L) = p(L)
f − ρ f g(D(L) + z(L) cos α)

(ρ − ρ f )gz(L) cos α
. (13)
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Table 1. Geometrical, material parameters and fluid pressure ratios for the stability analyses (validation and application to the Niger Delta).

Notation Definition Value/range Value/range Value/range Unit
[Sections 3.1 and 4.1] [Section 3.2] [Section 4.2]

α Topographic slope Variable 6.7 1b deg

β Detachment dip Variable −6.7 1.5
b

deg
h Reference height 1 4 × 10−5 3b km
LJG Collapse length Variable – 100–200 km
ϕa Friction angle (a = B, AS, NF, R)a 30 50–63 30c deg
ϕD Detachment friction angle 10 10 10c deg
Ca Cohesion (a = B, AS, NF, R)c (0, 0.1) · ρgh 0 (0–7) · 106 Pa
CD Detachment cohesion 0 0 0 Pa
ρf Fluid phase density 1000 1000 1030 kg m−3

ρ Saturated rock density 2000 2000 2400b kg m−3

λhydro Hydrostatic pressure ratio ( = ρf/ρ) 0.5 0.5 0.42 –
�λB Bulk overpressure ratio 0.0–0.2 −0.5–0.5 0.3–0.5 –
�λD Detachment overpressure ratio 0.1–0.3 �λB 0.5–0.57 –
aNotation: B, Bulk; AS, Axial surface; NF, Normal fault; R, Ramp.
bParameters are from Bilotti & Shaw (2005).
cParameters are from Krueger & Grant (2011) and Suppe (2014).

Figure 3. Comparison of fault dips (γ a, θa, γ p and θp) for the active (or upslope, extensional) and passive (or downslope, compressive) collapses. The solid
lines are the theoretical dips of the CCW theory provided in the Supporting Information Section ES2 for the sake of completeness.

The distance D(L) and the coordinate z(L) are defined in Fig. 2(a). Further information on the fluid pressure ratios is found in the Supporting
Information. This solution (12) coincides exactly with our solution (11). This can be verified by incorporating into (12) the definition of λ

(L)
D

in terms of λD, Supporting Information eq. (ES1.2), rearrange the trigonometric functions and finally use eq. (2) to obtain eq. (11).
The collapse extent L̃ J G is now compared with the analytical results of Lacoste et al. (2012, eq. (9)) which is presented in details in the

Supporting Information. For that purpose, the values of β̄c = 4◦ and 8◦ corresponding to �λD = 0.3 and 0.1 are selected. Their associated
critical lengths are infinite shown by the vertical dashed lines in Fig. 2(b). The other material property values are summarized in the third
column of Table 1.

The comparison of the Limit Analysis (symbols) and analytical results (curves) are presented in Figs 2(b) and (c). The two solutions are
very close for the three sets of detachment and bulk overpressure ratios. Differences become important at low values of L̃ J G , corresponding
to large slopes (β̄ ≥ 16◦) as shown by the relative difference between these two predictions (grey dashed curve) in Fig. 2(c). Note that, as
expected, the range of critical detachment dips β̄ for the finite collapse length is always greater than the critical dip β̄c for the infinite collapse
length. These curves also demonstrate that if an experiment is performed by increasing the detachment dip β̄ up to collapse, it will occur
for the longest length available for slip. If the experiment is conducted by increasing �λD, keeping a constant dip β̄, then the onset collapse
occurs also with the longest length available.

The comparison of the fault dips (γ a, θ a, γ p and θp) according the two approaches is presented in Fig. 3, the dips for the Lacoste et al.’s
(2012) solution being obtained from the Mohr’s construction of Lehner (1986) for the active and passive Rankine stress states. The interesting
result of eq. (8) is that the dip optimization is decoupled from the selection of the length since it is due to the scalar B only. As a consequence,
the dips are also the ones predicted by the CCW theory, as it is checked by numerical means and shown in Fig. 3.
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Gravity instability conditions for offshore wedges 1661

Figure 4. The validation of the Limit Analysis by comparing the fault dips with observations from the sandbox experiments. (a) The active faults formed by
different air pressures through the sand packs, modified after Mourgues & Cobbold (2003). (b) The comparison of active fault dips (γ a, θa) from experiments
(triangle and square symbols) and predictions from the Limit Analysis (grey zones between solid and dashed curves) as function of fluid pressure ratio.

3.2 Validation with sandbox experiments in fluid overpressured conditions

The dips of the active faults predicted with the Limit Analysis are now validated by comparing the predictions with the observations done on
the sandbox experiments of Mourgues & Cobbold (2003) in which fluid overpressures are obtained with compressed air. The experimental
setup consists of a rectangular box in which flat sand packs are built with a length of 40 cm, a width of 20 cm, and a height of 4 cm. The box
is inclined at β̄ = 6.7◦. The sand density ρs is 1700 kg m−3, the internal friction coefficient is 1.18 (ϕB = 50◦) and the bulk cohesion CB is in
the range 12 to 72 Pa, all information provided by the authors. The sand pack rests on two overlapping sieves. Beneath the sieves a pressure
chamber provides a uniform air pressure (pb) at the base of the sand body. The top is maintained at the atmospheric pressure pat so that air
flows through the sand in a direction perpendicular to the slope. With this setup, the pressure ratios on the detachment and in the sand are the
same λ

(M)
B = λ

(M)
D (Mourgues & Cobbold 2003, 2006b; Lacoste et al. 2012; Pons & Mourgues 2012). Definition of λ(M) in terms of λ is given,

again, in Section ES1 of the Supporting Information. By slowly moving one of the sieves in extension, conjugate normal faults are generated
when a discontinuity is created at the base (Fig. 4a). For each of the four experiments, the corresponding value of λ is given in Fig. 4(a).

Limit analysis provides not only the orientations of the active faults but also the passive fault dips as well as the length of the translational
domain. However, since the latter data was not published, the comparison is limited to the active faults dips. Furthermore, to complete our
data set, we assume that the detachment has zero cohesion and we choose ϕD = 10◦ to obtain indeed slip for the imposed dip at 6.7◦.

The experimental results and our predictions are presented in Fig. 4(b) where the fault dips are drawn versus the fluid pressure ratio
λD (= λB). The experimental results show that the normal fault dip γ a (triangle symbols) decreases and the axial surface dip θa (square
symbols) increases with the increase of the fluid pressure ratio. The internal friction angle ϕB inferred from these dips ranges between
52◦ (μB = 1.3) and 68◦ (μB = 2.5) at vanishing effective normal stress (Mourgues & Cobbold 2003, fig. 6c). The theoretical results obtained
for ϕB between 50◦ (solid curves) and 63◦ (dashed curves) are shown as grey ranges. They match well the experimental dips, except for θa

at λB = λD = 0.85. We conclude that the series of four experiments are well captured by the Limit Analysis. Another interesting observation
is that the passive fault dips (γ p, θp, Fig. 4b), compared to the active fault dips (γ a, θa), are not varying much until the fluid pressure ratio is
close to 0.8.

4 A P P L I C AT I O N T O T H E O F F S H O R E N I G E R D E LTA

The prototype is now wedge shaped to approximate the cross-section of the offshore Niger Delta. The collapse mechanism is identical to
the one previously considered. The fluid overpressures are determined by requiring that the observed surface and detachment dips, α and
β, correspond to conditions for the onset of instability. The differences between the predicted fluid overpressures and the ones previously
determined (Bilotti & Shaw 2005) are discussed to conclude the section.

4.1 Stability conditions

The stability condition in eq. (7) is based on the difference between the effective external power and the maximum resisting power which now
read
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1662 X.P. Yuan, Y.M. Leroy and B. Maillot

Figure 5. The collapse mechanism for a wedge with three interacting structural domains, (a), and comparison with the CCW theory, (b). The solid curves
bound the stability domain and account for the corrections proposed by Wang et al. (2006). The proposed critical surface slope (dash-dotted curve) due to the
interaction is function of the collapse length set here to LJG = 10h.

P̃ ′
ext(Ũ ) = �λMax

[
S̃HGŨHG sin(γa − ϕN F ) − S̃SB sin(β + ϕD) − S̃HWŨHW sin(γp + ϕR)

]

+ �λN F S̃J J ′ H ŨHG
sin(ϕN F )

cos(γa)
+ �λB S̃J J ′ I J̃J I

sin(ϕB)

cos(θa)
+ �λB S̃GG′ F J̃G F

sin(ϕB)

cos(θp)

+ �λR S̃GG′ EŨHW
sin(ϕR)

cos(γp)
+ �λD S̃J J ′G′G

sin(ϕD)

cos β
, (14)

and

P̃ ′
mr(Ũ ) = C̃D L̃ J G cos(ϕD) + C̃N F L̃ J H cos(ϕN F )ŨHG + C̃B L̃ J I cos(ϕB) J̃J I

+ C̃R L̃G E cos(ϕR)ŨH W + C̃B L̃G F cos(ϕB) J̃G F . (15)

These two equations correspond to a normalized and a dimensionless version of eqs (A3) and (A4) in Appendix A1. Normalization and
dimensional analysis are done as in the previous section except for the reference length which is now h, the thickness of the sediments above
point G at the wedge toe, Fig. 5(a). Note that the collapse mechanism position with respect to sea level, set by the position of point G, is
immaterial, since the external power is only function of the fluid pressure ratios, as discussed in the previous section. The surfaces SJ J ′ H , SJ J ′ I ,
SGG′ F , SGG′ E and SJ J ′G′G are the surfaces based on the points G′ and J′ found on the topography at the apex of points G and J, respectively.
Expressions for these surfaces are provided in Appendix A3 for the sake of completeness. The normal fault JH and the thrust ramp GE have the
same fluid pressure ratio and material properties as the bulk material. The relations between the various virtual velocities provided in eq. (9)
still apply to this prototype.

It is proposed to build a stability map in the (α, β) plane based on the stability condition in eq. (7) for given values of the pressure ratios
and the sliding block length. The following procedure is conducted for every set (α, β) to decide if the corresponding wedge is stable or not.
We first maximize the difference in eq. (7) with respect to the four dips γ a, θa, γ p and θp, respecting the constraints in eq. (3). Second, if
the maximum difference is negative, the wedge is said stable, otherwise unstable. Note that a positive difference marks a dynamic instability.
The result of the procedure is the dash-dotted curve in Fig. 5(b) obtained for the data corresponding to the third column in Table 1 and to
L̃ J G = 10.

The stability conditions due to the exact CCW theory (Wang et al. 2006) for cohesionless materials (grey area) have also been plotted
in this Fig. 5(b). Within the grey area, the wedge slides along the whole detachment without internal deformation either by its self-weight
or by tectonic compression. The lower boundary of this domain corresponds to the stability limit of accretionary wedges in the compressive
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Gravity instability conditions for offshore wedges 1663

Figure 6. (a) The critical surface slope as function of the detachment dip for the detachment activation length L̃ J G set to 10 or 100 and the bulk overpressure
ratio �λB set to 0 or 0.2 (dash-dotted curves). The bulk cohesion is zero. The solid curves are the upper stability limits of the exact CCW theory corresponding
to L̃ J G → ∞. In (b), comparison of the predictions with zero cohesion and with C̃B equal to 0.1 (dashed curves).

regime. Of more interest here is the upper boundary of the grey domain corresponding to gravity instability (Mourgues et al. 2014). This
upper limit is very close to our predictions (dash-dotted curve) for β larger than 25◦. The difference between our predictions and the exact
CCW theory is more apparent for small values of β with a maximum of approximately 5◦ in the topographic slope.

The stability of our prototype is further explored with the help of Fig. 6(a), presenting the critical curves of the exact CCW theory (solid
curves) and those obtained for L̃ J G = 10 and 100 (dash-dotted curves) at the bulk overpressure ratio �λB = 0 and 0.2. Changing L̃ J G from
10 to 100 results in a decrease of the critical topographic slope. The value of 100 is sufficiently large for the exact CCW theory, corresponding
to the limit of infinite L̃ J G , to be accurate enough. Increasing the bulk overpressure ratio from zero to 0.2 reduces significantly the critical
topographic slopes but the difference between the Limit Analysis and the CCW theory is still apparent up to a detachment dip of 20◦. The
role of cohesion is now discussed with the help of Fig. 6(b) and the comparison with the CCW theory is of course not possible anymore. The
dimensionless cohesion of 0.1 (physical value of 2 MPa, Table 1, third column) has little influence for the larger length L̃ J G . For the smaller
value of 10, the difference in α for a small value of β, say 5◦, is close to 5◦.

In summary, the interaction between the three regions of the collapsing wedge increases the stability limit of the wedge to larger
topographic slopes. The physical explanation is that the frontal thrust offers an additional resistance to the gravity instability, which is
therefore triggered for a larger surface slope. This effect is greater for cohesive materials and at low fluid pressures. This effect becomes
insignificant for L̃ J G tending to infinity and, for practical purposes, a dimensionless length greater than 100 is sufficiently large for the CCW
theory to be accurate enough.

4.2 Stability analysis of Niger Delta

The structure of the Niger Delta is characterized by normal faulting in the thickest part near the coast, and by fold-and-thrust belts in
the deepest, thinnest part, further offshore (Fig. 7a). This is broadly interpreted as a seaward gravity instability of the sedimentary basin
(Agada Formation) above a substratum of overpressured shale (Akata Formation; Wu & Bally 2000). In this last work, it was shown that the
interpretation of recent seismic lines in the shale domain has revealed that what was interpreted earlier as shale diapirs should be seen as the
result of thrusting. Although density inversion should not be disregarded, this information confirms the idea that the Niger Delta could be
interpreted to first order as a frictional wedge. The detachment has certainly a complex structure within the Akata Formation and, following
Bilotti & Shaw (2005) and Suppe (2014), we propose to represent this complex zone by a single, planar detachment from the extensional
domain to the thrusting domain. This detachment is dipping at β ∼ 1.5◦ (Fig. 7b) which corresponds to the average value found by Bilotti
& Shaw (2005) from 10 sections through the frontal toe with an average taper of 2.5◦ and an average surface slope α ∼ 1◦ (Fig. 7b). These
topographic slope and detachment dip are kept constant in the calculations presented in this section. The length LJG of the active detachment
is estimated to be in the range of 100–200 km from the works of Corredor et al. (2005) and Leduc et al. (2012) (Fig. 7a), and the height h of
sediments at the frontal thrust belt is about 3 km. The dimensionless length L̃ J G is thus between 30 and 70, a range for which the interaction
of the three structural domains cannot be disregarded according to the results of the previous section.

Mechanical properties of shales have been studied in the laboratory. Triaxial tests on Tournemire shales in Southern France (Bonnelye
et al. 2016) point to a friction coefficient of 0.2–0.3. This coefficient could be larger (0.4) for gouge materials depending on the organic content
and of course on the rate of straining (Kohli & Zoback 2013). In situ measurements by leak-off tests for the Gulf of Mexico point to a bulk
friction coefficient in the range 0.25–0.3 (Suppe 2014). The same author suggests that the fault in shales should have a smaller coefficient,
∼0.2, a value which is adopted here. Our bulk material is heterogeneous (sand and shale alternance) and we use a value of 0.6, consistent
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Figure 7. (a) Overview of offshore Niger Delta structural domains, modified from Leduc et al. (2012). (b) Cross-section PP′ (Morgan 2006) with the three
structural domains and the position of the assumed detachment surface in the Akata formation, adopted from Butler (2010).

with upper crustal rocks (Byerlee 1978). For the same reason, we choose a bulk cohesion of 7 MPa (C̃B = 0.1) while the detachment is
assumed cohesionless. The fluid pressure is hydrostatic (�λB = 0) at depths down to 2.3 km (fluid-retention depth) from the sea bed, and the
pressure increases closely to lithostatic pressure (�λB ≤ 0.58) if the depth is greater than 3 km (Krueger & Grant 2011). However, for sake of
simplicity in this contribution, we keep the overpressure ratios constant and vary them in the range of [0.3, 0.5] and [0.5, 0.57] for the bulk
and the detachment overpressure ratios, respectively. All parameters are summarized in Table 1 (fifth column).

Our stability predictions are now presented in Fig. 8 where the two graphs are constructed in the space spanned by the effective friction
coefficients of the bulk material and the detachment. They are defined by Hubbert & Rubey (1959) as μ′

i = tan(ϕi )(1 − λ
(L)
i ) with the

expression of λ(L) found in eq. (ES1.2) of the Supporting Information. The approximation of cos 2α by one is proposed in view of the very
low surface slope of the Niger Delta and the two effective friction coefficients have the final expression

μ′
i = tan(ϕi )

(
1 − �λi

�λMax

)
, i = B, D. (16)

The stability limits in the space spanned by μ′
B and μ′

D are determined for three values of the dimensionless detachment activation length
L̃ J G of 30, 70 and 104. The stability predictions for the last value correspond within numerical error to the CCW theory and are referred to
as the predictions for L̃ J G → ∞ in what follows.

Consider now Fig. 8(a) obtained with zero cohesion. The differences in the three stability limit curves confirm the importance of the
finite extent of the transitional domain. The Niger Delta stability conditions should lie within the grey area, bounded by the solutions for
the dimensionless length of 30 and 70. Note that this grey area has a cone shape with a tip at μ′

B = 0.017. For this frictional value, any
detachment friction coefficient and any transition length is possible. This singular result points to the conclusion that the bulk material with
the topographic slope α = 1◦ cannot remain stable with a bulk friction coefficient lower than 0.017. The grey cone thus partitions the stability
map in four regions. On top of the grey area, the wedge is stable if L̃ J G does not exceed 70. Below the grey cone, the wedge is unstable unless
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Gravity instability conditions for offshore wedges 1665

Figure 8. (a) The stability transition for the offshore Niger Delta in the space spanned by the bulk and detachment effective friction coefficient. The grey
region is where this transition should be found in view of the uncertainty of the detachment activation length, L̃ J G = 30−70. (b) Influence of bulk cohesion
on the shape and position of the grey region. The L̃ J G → ∞ curve is identical to the CCW prediction. Black triangle (μ′

B = 0.1, μ′
D = 0.01) indicates the

central position within the cone for zero cohesion.

this length is smaller than 30. To the left of μ′
B = 0.017, slope is definitely unstable. The solution for the Niger Delta should be within the

cone, the fourth region of the map.
The influence of the bulk cohesion (CB = 7 MPa) on the shape of this grey cone is examined in Fig. 8(b). The cone with zero cohesion

is also presented for the sake of comparison. The cone internal angle is larger in the presence of cohesion and the cone is shifted towards
smaller values of the detachment effective friction coefficient. Note that the singular behaviour at the cone tip is regularized once cohesion
is accounted for. Note also that cohesion enlarges the distance between the L̃ J G → ∞ stability limit and our predictions. To illustrate these
points, consider for example the friction coefficients μ′

B = 0.1, μ′
D = 0.01 signalled by the triangle symbol, corresponding to a central

position within the cone for zero cohesion. The addition of cohesion renders this point stable. The central position in the cone with cohesion
at μ′

B = 0.1 would be μ′
D = 0.005, half of the value in the absence of cohesion. It would be approximately a third of the value found on the

L̃ J G → ∞ curve for the same bulk friction coefficient.
The predicted stability limits are now examined in the (α, β) space, which was considered in section 4.1, to make a link with the work of

Bilotti & Shaw (2005). Their ten cross-sections in terms of the couple (α, β) are shown as black squares in Fig. 9 and the white square marks
the average value. The two graphs in the top row correspond to zero cohesion and the lower two are for a bulk cohesion of 7 MPa. The two
graphs on the left column correspond to �λD = 0.55 (μ′

D = 0.01) and the two graphs on the right column to �λD = 0.57 (μ′
D = 0.03). The

grey region corresponds to the grey cones discussed in Fig. 8(b) and the upper and the lower curves bounding each grey region correspond to
the dimensionless lengths of 30 and 70, respectively, as judged from their relative positions with respect to the CCW solution (L̃ J G → ∞).

The whole idea of this analysis is to figure out the range of fluid overpressures depending on the cohesion for which the average value
of Bilotti & Shaw (2005) is within our grey regions. To illustrate the difference between Bilotti & Shaw’s (2005) approach and our Limit
Analysis, we have also plotted in the top left graph the CCW theory for the compressive wedge, disregarding cohesion (dashed curve) and
accounting for cohesions (10 and 1 MPa for the bulk material and the detachment, respectively, dotted curve from Bilotti & Shaw 2005).
The grey regions are bounded by curves which are increasing functions of the detachment dip. To the contrary, the dotted and dashed curves
are decreasing functions of the same variable. This is simply a consequence of the fact that the two approaches do not correspond to the
same boundary of the stability domain as presented in Fig. 5(b). The dotted and dashed curves correspond to the lower boundary whereas
our predictions are shown by the generic dot-dashed curve which has a slope of same sign as the upper boundary (extensional) of the CCW
theory.

Consider the cohesionless case, Figs 9(a) and (b) for �λD = 0.55 and 0.57, respectively. In the left graph, the bulk overpressure ratio
must be close to 0.5 (approximately 0.47) for the white square to be in the associated grey region. In the right graph, the white square is
found in the grey region associated to �λB = 0.4. Adding cohesion, Figs 9(c) and (d), increases the bulk overpressure ratio to 0.5 for the two
detachment overpressure ratios. Note that cohesion has a more drastic influence on our stability predictions than on the purely compressive
predictions (little difference between the dotted and dashed curves).

We now summarize the findings from Figs 8 and 9. An onset of gravity instability linking the three structural domains implies that
μ′

D ≤ 0.017 and μ′
B ≤ 0.27, in the absence of cohesion (tip of grey cone and maximum μ′

B for the upper limit of the cone in Fig. 8a). The
fluid overpressure ratio �λB is between 0.4 and 0.5, and �λD ≥ 0.55 (with a maximum value at 0.57), Figs 9(a) and (b). If the bulk material
has a cohesion of 7 MPa, then the bounds are μ′

D ≤ 0.02 and μ′
B ≤ 0.2, Fig. 8(b). The fluid overpressure ratio �λB is likely to be 0.5 in the

bulk and in the range 0.55–0.57 within the detachment, Figs 9(c) and (d).
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Figure 9. The stability predictions according to the Limit Analysis (setting friction angle ϕD = 10◦) and to Bilotti & Shaw (2005) for the Niger Delta in
the space spanned by the critical surface slope and the detachment dip. The fluid overpressure ratio �λD is 0.55 and 0.57 in the left and the right column,
respectively. The bulk cohesion CB is 0 and 7 MPa in the top row and in the bottom row, respectively. The black squares and their average (the white square)
are data from Bilotti & Shaw (2005). They are fitted by the dotted curve determined from the CCW theory assuming tectonic compressive collapse. The grey
shaded domains present the uncertainty on the collapse length (L̃ J G = 30−70) and are predictions of the Limit Analysis accounting for interaction between
the three domains of the collapsing wedge.

5 C O N C LU D I N G D I S C U S S I O N

This contribution proposes an application of Limit Analysis to the gravity instability of offshore deltas linking the upslope extensional
half-graben (province B in Fig. 10a) to the downslope compressive thrusting (province A in same figure) with the sliding of the transitional
domain. The methodology accounts for topographies of any shape and for pore pressure fields in frictional and cohesive materials.

It is shown, for a homogeneous inclined layer, that the onset of gravity instability always occurs for the longest possible detachment
length by increasing the detachment overpressure. Cohesion requires a larger overpressure for the instability onset but does not change this
longest length selection. It is proved that the fault dips are exactly predicted by the CCW theory if the collapse mechanism is composed
of planar faults and axial surfaces. Such predictions for the normal fault dips are validated by matching the experimental results on normal
faulting triggered by air overpressure in sand analogues (Mourgues & Cobbold 2003).

For offshore wedges, the relative positions of the upper and lower slope breaks, controlled partly by sedimentation processes, define the
maximum available length for the instability. We demonstrate that the dimensionless length defined by the ratio of this active detachment
length to the thickness of the sediments at the frontal toe controls the importance of the interaction between the three provinces of the
delta. If that dimensionless length is greater than 100, simplified theories such as the CCW theory are sufficient to capture the stability
conditions. Below this value, the interaction between the three provinces is crucial to obtain accurate predictions. For the example of the
Niger Delta, the dimensionless length is in the range of 30–70. The fluid pressures are determined by considering the wedge of surface slope
1◦ and detachment dip 1.5◦ to be at the instability onset. For cohesionless materials, it is shown that the pore-fluid pressure within the bulk
material is 80–90 per cent of the lithostatic pressure (Hubbert–Rubey fluid-pressure ratio λB = 0.8–0.9). For the detachment, the pressure is
97–99 per cent of the lithostatic pressure, slightly larger values than predicted by Albertz et al. (2010). Cohesion increases the bulk pressure
ratio close to 0.9 but cannot change the detachment pressure predictions which are already at the maximum available range.
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Gravity instability conditions for offshore wedges 1667

Figure 10. (a) Schematic illustration of upslope extensional (B), transitional and downslope compressive (A) provinces, composing the gravity-driven collapse
of offshore deltas (modified from King et al. 2010). (b) The stability domain in the (α, β) plane according to the CCW theory (Dahlen 1984), accounting for
either extension or compression, and the amendment due to the three province interaction (dashed curve C).

Information on the Niger Delta wedge geometry were based on the work of Bilotti & Shaw (2005) who focused on the compressive
domain and applied the CCW theory. Their findings correspond to the curve A of the stability boundary presented in Fig. 10(b) whereas
our predictions are associated to the dashed curve C on the same graph. The difference between their and our stability predictions in terms
of detachment fluid overpressure are of the order of 10 per cent which is marginal in view of the data accuracy. This small difference in
overpressure is surprising because of the small dimensionless active transitional length whose importance was discussed above. We believe
that the account of bulk cohesion cannot justify this lack of difference. The reason for it is more likely due to the selection of the friction angle
because Bilotti & Shaw (2005) chose ϕB = ϕD = 42◦. Lower values (for example ϕB = 30◦, ϕD = 10◦, more consistent with our selection)
would lead to the very different prediction of λD = 0.49 with the CCW theory, which is only 49 per cent of the lithostatic pressure. It is only
by having similar friction angles that the difference in stability predictions between the CCW theory and the Limit Analysis can be revealed.

This contribution is a first tentative in linking the three provinces of a collapsing delta using Limit Analysis and could be complemented
in the future by different actions. Three aspects are now discussed. First, the geometry of the detachment is most likely not planar (Corredor
et al. 2005) and the introduction of a segmented detachment, corresponding to change in activation depth, is certainly possible and of interest.
Second, it is most likely that the shale compaction is not uniform along the 200 km long detachment and should be described by varying
the pressure ratio as considered by Pons et al. (2013) for the application to Nankai wedge, Japan. Third and more important, the present
contribution is the first building block required to develop the sequential version of Limit Analysis (Cubas et al. 2008; Mary et al. 2013a,b)
which aims at following the evolution of the wedge in time. Two steps are solved at each increment. The first step corresponds to the prediction
of the dominant collapse mechanism as it was done in this contribution and the second step consists in a modification of the geometry according
to simple geometric rules inspired from the half-graben kinematics (Groshong 1989; Xiao & Suppe 1992) and the classical fault-bend fold
(Suppe 1983). This structural evolution could also account for slip weakening once the faults slide, prograding depositional processes and
variation of the detachment pressures in time.

A C K N OW L E D G E M E N T S

XPY benefited from the support of the China Scholarship Council during his doctoral studies in France. The authors thank professors Carole
Petit, Michele Cooke and the Editor Bert Vermeersen for their comments which contributed to substantially improve the final version of this
manuscript.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/208/3/1655/2712524 by C

N
R

S - ISTO
 user on 21 August 2023



1668 X.P. Yuan, Y.M. Leroy and B. Maillot

R E F E R E N C E S

Albertz, M., Beaumont, C. & Ings, S.J., 2010. Geodynamic modeling of
sedimentation-induced overpressure, gravitational spreading, and defor-
mation of passive margin mobile shale basins, AAPG Memoir, 93, 29–62.

Bilotti, F. & Shaw, J.H., 2005. Deep-water Niger Delta fold and thrust belt
modeled as a critical-taper wedge: the influence of elevated basal fluid
pressure on structural styles, AAPG Bull., 89(11), 1475–1491.

Bonnelye, A., Schubnel, A., David, C., Henry, P., Guglielmi, Y., Gout,
C., Fauchille, A. & Dick, P., 2016. Strength anisotropy of shales
deformed under uppermost-crustal conditions, J. geophys. Res., 121,
doi:10.1002/2016JB013040.

Butler, R., 2010. Stratigraphic correlations across the Niger Delta,
http://www.seismicatlas.org/.

Byerlee, J., 1978. Friction of rocks, Pure appl. Geophys., 116(4–5), 615–626.
Chen, W., 1975. Limit Analysis and Soil Plasticity, Elsevier.
Cobbold, P., Mourgues, R. & Boyd, K., 2004. Mechanism of thin-

skinned detachment in the Amazon Fan: assessing the importance of
fluid overpressure and hydrocarbon generation, Mar. Pet. Geol., 21(8),
1013–1025.

Corredor, F., Shaw, J. & Bilotti, F., 2005. Structural styles in the deep-water
fold and thrust belts of the Niger Delta, AAPG Bull., 89(6), 753–780.

Crans, W., Mandl, G. & Haremboure, J., 1980. On the theory of growth
faulting: a geomechanical delta model based on gravity sliding, J. Pet.
Geol., 2(3), 265–307.

Cubas, N., Leroy, Y.M. & Maillot, B., 2008. Prediction of thrusting
sequences in accretionary wedges, J. geophys. Res., 113, B12412,
doi:10.1029/2008JB005717.

Dahlen, F.A., 1984. Noncohesive critical Coulomb wedges: an exact solu-
tion, J. geophys. Res., 89(B12), 10 125–10 133.

Damuth, J.E., 1994. Neogene gravity tectonics and depositional processes on
the deep Niger Delta continental margin, Mar. Pet. Geol., 11(3), 320–346.

Ge, H., Jackson, M.P. & Vendeville, B.C., 1997. Kinematics and dy-
namics of salt tectonics driven by progradation, AAPG Bull., 81(3),
398–423.

Groshong, R.H., 1989. Half-graben structures: balanced models of exten-
sional fault-bend folds, Bull. geol. Soc. Am., 101(1), 96–105.

Hooper, R., Fitzsimmon, R., Grant, N. & Vendeville, B., 2002. The role
of deformation in controlling depositional patterns in the south-central
Niger Delta, West Africa, J. Struct. Geol., 24(4), 847–859.

Hubbert, M.K. & Rubey, W.W., 1959. Role of fluid pressure in mechanics of
overthrust faulting: I. Mechanics of fluid-filled solids and its application
to overthrust faulting, Bull. geol. Soc. Am., 70, 115–166.

King, R.C., Tingay, M.R., Hillis, R.R., Morley, C.K. & Clark, J.,
2010. Present-day stress orientations and tectonic provinces of the
NW Borneo collisional margin, J. geophys. Res., 115, B10415,
doi:10.1029/2009JB006997.

Kohli, A.H. & Zoback, M.D., 2013. Frictional properties of shale reservoir
rocks, J. geophys. Res., 118(9), 5109–5125.

Krueger, S.W. & Grant, N.T., 2011. The growth history of toe thrusts of the
Niger Delta and the role of pore pressure, AAPG Memoir, 94, 357–390.

Lacoste, A., Vendeville, B.C., Mourgues, R., Loncke, L. & Lebacq, M., 2012.
Gravitational instabilities triggered by fluid overpressure and downslope
incision - insights from analytical and analogue modelling, J. Struct.
Geol., 42, 151–162.

Leduc, A.M., Davies, R.J., Densmore, A.L. & Imber, J., 2012. The lat-
eral strike-slip domain in gravitational detachment delta systems: a case
study of the northwestern margin of the Niger Delta, AAPG Bull., 96(4),
709–728.

Lehner, F.K., 1986. Noncohesive critical Coulomb wedges: an exact
solution—Comments, J. geophys. Res., 91(B1), 793–796.

Maillot, B. & Leroy, Y.M., 2006. Kink-fold onset and development based
on the maximum strength theorem, J. Mech. Phys. Solids, 54(10),
2030–2059.

Maloney, D., Davies, R., Imber, J., Higgins, S. & King, S., 2010. New in-
sights into deformation mechanisms in the gravitationally driven Niger
Delta deep-water fold and thrust belt, AAPG Bull., 94(9), 1401–1424.

Mary, B., Maillot, B. & Leroy, Y.M., 2013a. Deterministic chaos in frictional
wedges revealed by convergence analysis, Int. J. Numer. Anal. Methods
Geomech., 37, 3036–3051.

Mary, B., Maillot, B. & Leroy, Y.M., 2013b. Predicting orogenic wedge
styles as a function of analogue erosion law and material softening,
Geochem. Geophys. Geosyst., 14, 4523–4543.

McClay, K., Dooley, T. & Lewis, G., 1998. Analog modeling of prograda-
tional delta systems, Geology, 26(9), 771–774.

Morgan, R., 2006. The Niger delta: an active passive margin, GEO Expro,
4(5), 36.

Mourgues, R. & Cobbold, P., 2003. Some tectonic consequences of fluid
overpressures and seepage forces as demonstrated by sandbox modelling,
Tectonophysics, 376, 75–97.

Mourgues, R. & Cobbold, P., 2006a. Thrust wedges and fluid overpressures:
Sandbox models involving pore fluids, J. geophys. Res., 111, B05404,
doi:10.1029/2004JB003441.

Mourgues, R. & Cobbold, P.R., 2006b. Sandbox experiments on gravita-
tional spreading and gliding in the presence of fluid overpressures, J.
Struct. Geol., 28(5), 887–901.

Mourgues, R., Lecomte, E., Vendeville, B. & Raillard, S., 2009. An exper-
imental investigation of gravity-driven shale tectonics in progradational
delta, Tectonophysics, 474(3–4), 643–656.

Mourgues, R., Lacoste, A. & Garibaldi, C., 2014. The Coulomb critical
taper theory applied to gravitational instabilities, J. geophys. Res., 119(1),
754–765.

Pons, A. & Leroy, Y.M., 2012. Stability of accretionary wedges based on
the maximum strength theorem for fluid-saturated porous media, J. Mech.
Phys. Solids, 60, 643–664.

Pons, A. & Mourgues, R., 2012. Deformation and stability of over-pressured
wedges: insight from sandbox models, J. geophys. Res., 117, B09404,
doi:10.1029/2012JB009379.

Pons, A., Leroy, Y.M. & Lallemant, S., 2013. Fluid pressure control on splay
fault activation in accretionary prism based on the maximum strength the-
orem with application to the Nankai wedge, Earth planet. Sci. Lett., 368,
43–50.

Rowan, M.G., Peel, F.J. & Vendeville, B.C., 2004. Gravity-driven fold belts
on passive margins, AAPG Memoir, 82, 157–182.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJIRAS online.

Figure ES1. (a) The definition of the fluid pressure ratio is function of distance from the point of interest within the wedge to the topographic
surface. The black segment was proposed by Hubbert & Rubey (1959) and blue segment was considered by Lacoste et al. (2012). (b) The
illustration of the definition for fluid pressure ratio λ(H) and overpressure ratio �λ(H) in Hubbert & Rubey (1959).
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A P P E N D I X A : D E TA I L S O F L I M I T A NA LY S I S S O LU T I O N S

The first objective of this appendix is to provide the effective external power and the maximum resisting power in eqs (5) and (6), respectively.
The second objective is to specialize these expressions for the cases of the inclined layer and of the wedge prototype.

A1 General solution

The velocity field is piecewise-uniform over the prototype and is selected such that the velocity jumps are not parallel to the discontinuity
but at a corresponding friction angle, as presented in Fig. A1 for the upslope and the downslope parts of the collapse mechanism. The norms
of velocity jumps are then determined from the hodographs presented on the same figure and the normalization is with respect to the sliding
block velocity.

The effective external power P ′
ext(Û ) in eq. (5) for this velocity field is

P ′
ext(Û ) = ρg · (SHGÛ HG + SSBÛ SB + SHWÛ HW)

+
∫ H

J
pJ H dS n J H · Û HG +

∫ I

J
pJ I dS n J I · Ĵ J I +

∫ F

G
pG F dS nG F · Ĵ G F

+
∫ E

G
pG E dS nG E · Û HW +

∫ G

J
pD dS n J G · Û SB

+
∫ I

H
p f dS nH I · Û HG +

∫ F

E
p f dS nE F · Û HW +

∫ I

F
p f dS nF I · Û SB . (A1)

Figure A1. The velocity field for the extensional and the compressive parts of the collapse mechanism in (a) and (b), respectively, with the associated
hodographs of the velocity jumps across the axial surfaces JI and GF.
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Figure A2. Geometries of (a) Inclined layer and (b) wedge prototype used to calculate the block sizes.

The first term in the right-hand side of eq. (A1) corresponds to the power of the velocity field on the gravity in the HG, the SB and the HW.
The next five integrals are the contributions of the power of the velocity jumps on the fluid pressure within the normal fault JH, the upslope
axial surface JI, the downslope axial surface GF, the thrust ramp GE, and the detachment JG. Note that pXY denotes the fluid pressure between
point X and Y and nXY indicates the normal vector to segment XY. The last three terms in (A1) result from the power of the fluid pressure on
the topography.

Expression (A1) is now simplified by application of the following weak form of Archimedes’ theorem as explained in the Electronic
Supplement of paper 1: the power of the velocity field on the hydrostatic part of the pressure is equal to the opposite of the power of the same
velocity field on the vertical forces resulting from the weight of the displaced regions, if assumed composed of a material of volumetric mass
ρ f. The effective external power (A1) is then expressed simply in terms of the departure from the hydrostatic pressure as

P ′
ext(Û ) = (ρ − ρ f )g · (

SHGÛ HG + SSBÛ SB + SHWÛ HW

)

+
∫ H

J
�pJ H dS n J H · Û HG +

∫ I

J
�pJ I dS n J I · Ĵ J I +

∫ F

G
�pG F dS nG F · Ĵ G F

+
∫ E

G
�pG E dS nG E · Û HW +

∫ G

J
�pD dS n J G · Û SB . (A2)

Two operations are now conducted. First, the orientation of the velocity field is explicitly accounted for and second, the pressures are expressed
in terms of the overpressure ratios in eq. (1) so that the integrals in eq. (A2) are estimated exactly. For that purpose, the points J′ and G′ are
introduced on the topography to have the same x1-coordinate as points J and G, respectively, Fig. A1. The effective external power in eq. (A2)
then becomes:

P ′
ext(Û ) = (ρ − ρ f )g

[
SHGÛHG sin(γa − ϕN F ) − SSBÛSB sin(β + ϕD) − SHWÛHW sin(γp + ϕR)

]

+ ρg
[
�λN F SJ J ′ H ÛHG

sin(ϕN F )

cos(γa)
+ �λB SJ J ′ I ĴJ I

sin(ϕB)

cos(θa)
+ �λB SGG′ F ĴG F

sin(ϕB)

cos(θp)

+ �λR SGG′ EÛHW
sin(ϕR)

cos(γp)
+ �λD SJ J ′G′GÛSB

sin(ϕD)

cos β

]
, (A3)

in which, SXYZ is the area of the surface having the apexes X, Y and Z.
The maximum resisting power defined in eq. (6) for this velocity field is

P ′
mr(Û ) = CD L J G cos(ϕD)ÛSB + CN F L J H cos(ϕN F )ÛHG + CB L J I cos(ϕB) ĴJ I

+ CR LG E cos(ϕR)ÛH W + CB LG F cos(ϕB) ĴG F , (A4)

which corresponds to the sum of the maximum resisting power over the discontinuities JG, JH, JI, GE and GF, respectively.

A2 Inclined layer

For the inclined layer in Fig. A2(a), the lengths found in eq. (A4) are

L J H = h/ sin(γa + β) , L J I = h/ sin(θa − β) , LG E = h/ sin(γp − β) , LG F = h/ sin(θp + β) . (A5)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/208/3/1655/2712524 by C

N
R

S - ISTO
 user on 21 August 2023



Gravity instability conditions for offshore wedges 1671

The areas introduced in eq. (A3) are

SHG = h2
[

cot(γa + β) + cot(θa − β)
]
/2 , SSB = L J G h − h2

[
cot(θa − β) + cot(θp + β)

]
/2,

SHW = h2
[

cot(θp + β) + cot(γp − β)
]
/2 , SJ J ′ H = h2 cos(γa)

2 sin(γa + β) cos β
, SJ J ′ I = h2 cos(θa)

2 sin(θa − β) cos β
,

SGG′ E = h2 cos(γp)

2 sin(γp − β) cos β
, SGG′ F = h2 cos(θp)

2 sin(θp + β) cos β
, SJ J ′G′G = L J G h. (A6)

Combining eq. (A3) with eqs (A5) and (A6) results in the effective external power in eq. (8) which is normalized by ρgh2ÛBS .

A3 Wedge prototype

For the wedge prototype, the reference length is LGG′ = h, Fig. A2(b). The lengths required in eq. (A4) for the maximum resisting power
are

L J H = L J J ′ cos α

sin(γa − α)
, L J I = L J J ′ cos α

sin(θa + α)
, LG E = h cos α

sin(γp + α)
, LG F = h cos α

sin(θp − α)
,

with L J J ′ = L J G sin β + h + L J G cos β tan α , (A7)

and the areas found in eq. (A3) correspond to

SJ J ′ H = L2
J J ′ cos(γa) cos α

2 sin(γa − α)
, SJ J ′ I = L2

J J ′ cos(θa) cos α

2 sin(θa + α)
, SGG′ E = h2 cos(γp) cos α

2 sin(γp + α)
,

SGG′ F = h2 cos(θp) cos α

2 sin(θp − α)
, SJ J ′G′G = (h + L J J ′ )L J G cos β

2
,

SHG = SJ J ′ H + SJ J ′ I , SHW = SGG′ E + SGG′ F , SSB = SJ J ′G′G − SJ J ′ I − SGG′ F . (A8)

The expressions in eqs (14) and (15) are obtained by combining eqs (A7) and (A8) with eqs (A3) and (A4).
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