A code-based group signature scheme
Résumé
This work is the extended version of Alamélou et al. (in: Tillich et al. (eds.) The 9th International workshop on coding and cryptography 2015 (WCC2015), 2015) which proposed the first code-based group signature. The new group signature scheme we present here has numerous advantages over all existing post-quantum constructions and even competes (in terms of properties) with pairing based constructions: it allows to add new members during the lifetime of the group (dynamic). Plus, it appears that our scheme might be extended into a traceable signature according to the definition of Kiayias et al. (in: Cachin and Camenisch (eds.) Advances in cryptology−-EUROCRYPT 2004, 2004) (KTY model) while handling membership revocation. Our security is based on a relaxation of the model of Bellare et al. (in: Topics in cryptology−-CT-RSA 2005, 2005) (BSZ model) verifying the properties of anonymity, traceability and non-frameability. The main idea of our scheme consists in building an offset collision of two syndromes associated to two different matrices: a random one which enables to build a random syndrome from a chosen small weight vector; and a trapdoor matrix for the syndrome decoding problem, which permits to find a small weight preimage of the previous random syndrome to which a fixed syndrome is added. These two small weight vectors will constitute the group member's secret signing key whose knowledge will be proved thanks to a variation of Stern's authentication protocol. For applications, we consider the case of the code-based CFS signature scheme (Nicolas in Advances in cryptology−-ASIACRYPT 2001, 2001) of Courtois, Finiasz and Sendrier. If one denotes by N the number of group members, CFS leads to signatures and public keys sizes in \\N^\1/\backslashsqrt\\\backslashlog \(N)\\\\ N 1 / log ( N ) . Along with this work, we also introduce a new kind of proof of knowledge, Testable weak Zero Knowledge (TwZK), implicitly covered in the short version of this paper (Alamélou et al. in: Tillich et al. (eds.) The 9th international workshop on coding and cryptography 2015 (WCC2015), 2015). TwZK proofs appear particularly well fitted in the context of group signature schemes: it allows a verifier to test whether a specific witness is used without learning anything more from the proof. Under the random oracle model (ROM), we ensure the security of our scheme by defining the One More Syndrome Decoding problem, a new code-based problem related to the syndrome decoding problem (Berlekamp et al. in IEEE Trans Inf Theory 24(3):384−386, 1978).
Domaines
Cryptographie et sécurité [cs.CR]Origine | Fichiers produits par l'(les) auteur(s) |
---|