An Evolutionary Boundary Value Problem
Résumé
We consider a nonlinear initial boundary value problem in a two-dimensional rectangle. We derive variational formulation of the problem which is in the form of an evolutionary variational inequality in a product Hilbert space. Then, we establish the existence of a unique weak solution to the problem and prove the continuous dependence of the solution with respect to some parameters. Finally, we consider a second variational formulation of the problem, the so-called dual variational formulation, which is in a form of a history-dependent inequality associated with a time-dependent convex set. We study the link between the two variational formulations and establish existence, uniqueness, and equivalence results.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|