ON THE COEFFICIENTS OF THE ZETA-FUNCTION'S L-POLYNOMIAL FOR ALGEBRAIC FUNCTION FIELDS OVER FINITE CONSTANT FIELDS
Résumé
We give an explicit formula of the coefficients of the Zeta-Function's L-polynomial for algebraic function fields over finite constant fields. Thus, we deduce an expression of the class number of algebraic function fields defined over finite fields. Moreover, we give an application of this formula in the case of the curves of defect 2 defined over F 2 .
Fichier principal
On the coefficients of the $L$-polynomial for algebraic function fields over finite constant fields.pdf (153.08 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|