Finite and infinite degree Thurston maps with extra marked points - Institut de Mathématiques de Marseille 2014-
Pré-Publication, Document De Travail Année : 2024

Finite and infinite degree Thurston maps with extra marked points

Nikolai Prochorov
  • Fonction : Auteur
  • PersonId : 1369278

Résumé

We investigate the family of marked Thurston maps that are defined everywhere on the topological sphere $S^2$, potentially excluding at most countable closed set of essential singularities. We show that when an unmarked Thurston map $f$ is realized by a postsingularly finite holomorphic map, the marked Thurston map $(f, A)$, where $A \subset S^2$ is the corresponding finite marked set, admits such a realization if and only if it has no degenerate Levy cycle. To obtain this result, we analyze the associated pullback map $\sigma_{f, A}$ defined on the Teichmüller space $\mathcal{T}_A$ and demonstrate that some of its iterates admit well-behaved invariant complex sub-manifolds within $\mathcal{T}_A$. By applying powerful machinery of one-dimensional complex dynamics and hyperbolic geometry, we gain a clear understanding of the behavior of the map $\sigma_{f, A}$ restricted to the corresponding invariant subset of the Teichmüller space $\mathcal{T}_A$.
Fichier principal
Vignette du fichier
HAL_Extra_marked_points.pdf (496.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04727048 , version 1 (08-10-2024)

Identifiants

  • HAL Id : hal-04727048 , version 1

Citer

Nikolai Prochorov. Finite and infinite degree Thurston maps with extra marked points. 2024. ⟨hal-04727048⟩
44 Consultations
8 Téléchargements

Partager

More